Перевод: со всех языков на все языки

со всех языков на все языки

American Locomotive Company

  • 1 American Locomotive Company

    Trademark term: ALCO

    Универсальный русско-английский словарь > American Locomotive Company

  • 2 ALCO

    2) Банковское дело: asset and liability committee (Комитет по управлению активами и пассивами), КУАП (Комитет по управлению активами и пассивами), КОМАП (Комитет по управлению активами и пассивами)
    3) Фирменный знак: American Locomotive Company

    Универсальный англо-русский словарь > ALCO

  • 3 alco

    2) Банковское дело: asset and liability committee (Комитет по управлению активами и пассивами), КУАП (Комитет по управлению активами и пассивами), КОМАП (Комитет по управлению активами и пассивами)
    3) Фирменный знак: American Locomotive Company

    Универсальный англо-русский словарь > alco

  • 4 Stevens, Robert Livingston

    SUBJECT AREA: Ports and shipping
    [br]
    b. 18 October 1787 Hoboken, New Jersey, USA
    d. 20 April 1856 Hoboken, New Jersey, USA
    [br]
    American engineer, pioneer of steamboats and railways.
    [br]
    R.L.Stevens was the son of John Stevens and was given the technical education his father lacked. He assisted his father with the Little Juliana and the Phoenix, managed the commercial operation of the Phoenix on the Delaware River, and subsequently built many other steamboats.
    In 1830 he and his brother Edwin A.Stevens obtained a charter from the New Jersey Legislature for the Camden \& Amboy Railroad \& Transportation Company, and he visited Britain to obtain rails and a locomotive. Railway track in the USA then normally comprised longitudinal timber rails with running surfaces of iron straps, but Stevens designed rails of flat-bottom section, which were to become standard, and had the first batch rolled in Wales. He also designed hookheaded spikes for them, and "iron tongues", which became fishplates. From Robert Stephenson \& Co. (see Robert Stephenson) he obtained the locomotive John Bull, which was similar to the Liverpool \& Manchester Railway's Samson. The Camden \& Amboy Railroad was opened in 1831, but John Bull, a 0–4–0, proved over sensitive to imperfections in the track; Stevens and his mechanic, Isaac Dripps, added a two-wheeled non-swivelling "pilot" at the front to guide it round curves. The locomotive survives at the Smithsonian Institution, Washington, DC.
    [br]
    Further Reading
    H.P.Spratt, 1958, The Birth of the Steamboat, Charles Griffin.
    J.H.White Jr, 1979, A History of the American Locomotive—Its Development: 1830– 1880, New York: Dover Publications Inc.
    J.F.Stover, 1961, American Railroads, Chicago: University of Chicago Press.
    PJGR

    Biographical history of technology > Stevens, Robert Livingston

  • 5 Daft, Leo

    [br]
    b. 13 November 1843 Birmingham, England
    d. 28 March 1922
    [br]
    English electrical engineer, pioneer of electric-power generation and electric railways in the USA.
    [br]
    Leo Daft, son of a British civil engineer, studied electricity and emigrated to the USA in 1866. After various occupations including running a photographic studio, he joined in 1879 the New York Electric Light Company, which was soon merged into the Daft Electric Company. This company developed electrically powered machinery and built electric-power plants. In 1883 Daft built an electric locomotive called Ampere for the Saratoga \& Mount McGregor Railroad. This is said to have been the first electric main-line locomotive for standard gauge. It collected current from a central rail, had an output of 12 hp (9 kW) and hauled 10 tons at speeds up to 9 mph (14.5 km/h). Two years later Daft made a much improved locomotive for the New York Elevated Railway, the Benjamin Franklin, which drew current at 250 volts from a central rail and had two 48 in. (122 cm)-diameter driving wheels and two 33 in. (84 cm)-diameter trailing wheels. Re-equipped in 1888 with four driving wheels and a 125 hp (93 kW) motor, this could haul an eight-car train at 10 mph (16 km/h). Meanwhile, in 1884, Daft's company had manufactured all the electrical apparatus for the Massachusetts Electric Power Company, the first instance of a complete central station to generate and distribute electricity for power on a commercial scale. In 1885 it electrified a branch of the Baltimore Union Passenger Railway, the first electrically operated railway in the USA. Subsequently Daft invented a process for vulcanizing rubber onto metal that came into general use. He never became an American citizen.
    [br]
    Further Reading
    Dictionary of American Biography.
    F.J.G.Haut, 1969, The History of the Electric Locomotive, London: George Allen \& Unwin.
    PJGR

    Biographical history of technology > Daft, Leo

  • 6 Hamilton, Harold Lee (Hal)

    [br]
    b. 14 June 1890 Little Shasta, California, USA
    d. 3 May 1969 California, USA
    [br]
    American pioneer of diesel rail traction.
    [br]
    Orphaned as a child, Hamilton went to work for Southern Pacific Railroad in his teens, and then worked for several other companies. In his spare time he learned mathematics and physics from a retired professor. In 1911 he joined the White Motor Company, makers of road motor vehicles in Denver, Colorado, where he had gone to recuperate from malaria. He remained there until 1922, apart from an eighteenth-month break for war service.
    Upon his return from war service, Hamilton found White selling petrol-engined railbuses with mechanical transmission, based on road vehicles, to railways. He noted that they were not robust enough and that the success of petrol railcars with electric transmission, built by General Electric since 1906, was limited as they were complex to drive and maintain. In 1922 Hamilton formed, and became President of, the Electro- Motive Engineering Corporation (later Electro-Motive Corporation) to design and produce petrol-electric rail cars. Needing an engine larger than those used in road vehicles, yet lighter and faster than marine engines, he approached the Win ton Engine Company to develop a suitable engine; in addition, General Electric provided electric transmission with a simplified control system. Using these components, Hamilton arranged for his petrol-electric railcars to be built by the St Louis Car Company, with the first being completed in 1924. It was the beginning of a highly successful series. Fuel costs were lower than for steam trains and initial costs were kept down by using standardized vehicles instead of designing for individual railways. Maintenance costs were minimized because Electro-Motive kept stocks of spare parts and supplied replacement units when necessary. As more powerful, 800 hp (600 kW) railcars were produced, railways tended to use them to haul trailer vehicles, although that practice reduced the fuel saving. By the end of the decade Electro-Motive needed engines more powerful still and therefore had to use cheap fuel. Diesel engines of the period, such as those that Winton had made for some years, were too heavy in relation to their power, and too slow and sluggish for rail use. Their fuel-injection system was erratic and insufficiently robust and Hamilton concluded that a separate injector was needed for each cylinder.
    In 1930 Electro-Motive Corporation and Winton were acquired by General Motors in pursuance of their aim to develop a diesel engine suitable for rail traction, with the use of unit fuel injectors; Hamilton retained his position as President. At this time, industrial depression had combined with road and air competition to undermine railway-passenger business, and Ralph Budd, President of the Chicago, Burlington \& Quincy Railroad, thought that traffic could be recovered by way of high-speed, luxury motor trains; hence the Pioneer Zephyr was built for the Burlington. This comprised a 600 hp (450 kW), lightweight, two-stroke, diesel engine developed by General Motors (model 201 A), with electric transmission, that powered a streamlined train of three articulated coaches. This train demonstrated its powers on 26 May 1934 by running non-stop from Denver to Chicago, a distance of 1,015 miles (1,635 km), in 13 hours and 6 minutes, when the fastest steam schedule was 26 hours. Hamilton and Budd were among those on board the train, and it ushered in an era of high-speed diesel trains in the USA. By then Hamilton, with General Motors backing, was planning to use the lightweight engine to power diesel-electric locomotives. Their layout was derived not from steam locomotives, but from the standard American boxcar. The power plant was mounted within the body and powered the bogies, and driver's cabs were at each end. Two 900 hp (670 kW) engines were mounted in a single car to become an 1,800 hp (l,340 kW) locomotive, which could be operated in multiple by a single driver to form a 3,600 hp (2,680 kW) locomotive. To keep costs down, standard locomotives could be mass-produced rather than needing individual designs for each railway, as with steam locomotives. Two units of this type were completed in 1935 and sent on trial throughout much of the USA. They were able to match steam locomotive performance, with considerable economies: fuel costs alone were halved and there was much less wear on the track. In the same year, Electro-Motive began manufacturing diesel-electrie locomotives at La Grange, Illinois, with design modifications: the driver was placed high up above a projecting nose, which improved visibility and provided protection in the event of collision on unguarded level crossings; six-wheeled bogies were introduced, to reduce axle loading and improve stability. The first production passenger locomotives emerged from La Grange in 1937, and by early 1939 seventy units were in service. Meanwhile, improved engines had been developed and were being made at La Grange, and late in 1939 a prototype, four-unit, 5,400 hp (4,000 kW) diesel-electric locomotive for freight trains was produced and sent out on test from coast to coast; production versions appeared late in 1940. After an interval from 1941 to 1943, when Electro-Motive produced diesel engines for military and naval use, locomotive production resumed in quantity in 1944, and within a few years diesel power replaced steam on most railways in the USA.
    Hal Hamilton remained President of Electro-Motive Corporation until 1942, when it became a division of General Motors, of which he became Vice-President.
    [br]
    Further Reading
    P.M.Reck, 1948, On Time: The History of the Electro-Motive Division of General Motors Corporation, La Grange, Ill.: General Motors (describes Hamilton's career).
    PJGR

    Biographical history of technology > Hamilton, Harold Lee (Hal)

  • 7 McCoy, Elijah

    [br]
    b. 1843 Colchester, Ontario, Canada
    d. 1929 Detroit, Michigan (?), USA
    [br]
    African-American inventor of steam-engine lubricators.
    [br]
    McCoy was born into a community of escaped African-American slaves. As a youth he went to Scotland and served an apprenticeship in Edinburgh in mechanical engineering. He returned to North America and ended up in Ypsilanti, Michigan, seeking employment at the headquarters of the Michigan Central Railroad Company. In spite of his training, the only job McCoy could obtain was that of locomotive fireman. Still, that enabled him to study at close quarters the problem of lubricating adequately the moving parts of a steam locomotive. Inefficient lubrication led to overheating, delays and even damage. In 1872 McCoy patented the first of his lubricating devices, applicable particularly to stationary engines. He assigned his patent rights to W. and S.C.Hamlin of Ypsilanti, from which he derived enough financial resources to develop his invention. A year later he patented an improved hydrostatic lubricator, which could be used for both stationary and locomotive engines, and went on to make further improvements. McCoy's lubricators were widely taken up by other railroads and his employers promoted him from the footplate to the task of giving instruction in the use of his lubricating equipment. Many others had been attempting to achieve the same result and many rival products were on the market, but none was superior to McCoy's, which came to be known as "the Real McCoy", a term that has since acquired a wider application than to engine lubricators. McCoy moved to Detroit, Michigan, as a patent consultant in the railroad business. Altogether, he took out over fifty patents for various inventions, so that he became one of the most prolific of nineteenth-century black inventors, whose activities had been so greatly stimulated by the freedoms they acquired after the American Civil War. His more valuable patents were assigned to investors, who formed the Elijah McCoy Manufacturing Company. McCoy himself, however, was not a major shareholder, so he seems not to have derived the benefit that was due to him.
    [br]
    Further Reading
    P.P.James, 1989, The Real McCoy: African-American Invention and Innovation 1619– 1930, Washington: Smithsonian Institution, pp. 73–5.
    LRD

    Biographical history of technology > McCoy, Elijah

  • 8 Allen, Horatio

    [br]
    b. 10 May 1802 Schenectady, New York, USA
    d. 1 January 1890 South Orange, New Jersey, USA
    [br]
    American engineer, pioneer of steam locomotives.
    [br]
    Allen was the Resident Engineer for construction of the Delaware \& Hudson Canal and in 1828 was instructed by J.B. Jervis to visit England to purchase locomotives for the canal's rail extension. He drove the locomotive Stourbridge Lion, built by J.U. Rastrick, on its first trial on 9 August 1829, but weak track prevented its regular use.
    Allen was present at the Rainhill Trials on the Liverpool \& Manchester Railway in October 1829. So was E.L.Miller, one of the promoters of the South Carolina Canal \& Rail Road Company, to which Allen was appointed Chief Engineer that autumn. Allen was influential in introducing locomotives to this railway, and the West Point Foundry built a locomotive for it to his design; it was the first locomotive built in the USA for sale. This locomotive, which bore some resemblance to Novelty, built for Rainhill by John Braithwaite and John Ericsson, was named Best Friend of Charleston. On Christmas Day 1830 it hauled the first scheduled steam train to run in America, carrying 141 passengers.
    In 1832 the West Point Foundry built four double-ended, articulated 2–2–0+0–2–2 locomotives to Horatio Allen's design for the South Carolina railroad. From each end of a central firebox extended two boiler barrels side by side with common smokeboxes and chimneys; wheels were mounted on swivelling sub-frames, one at each end, beneath these boilers. Allen's principal object was to produce a powerful locomotive with a light axle loading.
    Allen subsequently became a partner in Stillman, Allen \& Co. of New York, builders of marine engines, and in 1843 was President of the Erie Railroad.
    [br]
    Further Reading
    J.Marshall, 1978, A Biographical Dictionary of Railway Engineers, Newton Abbot: David \& Charles.
    Dictionary of American Biography.
    R.E.Carlson, 1969, The Liverpool \& Manchester Railway Project 1821–1831, Newton Abbot: David \& Charles.
    J.F.Stover, 1961, American Railroads, Chicago: University of Chicago Press.
    J.H.White Jr, 1994, "Old debts and new visions", in Common Roots—Separate Branches, London: Science Museum, 79–82.
    PJGR

    Biographical history of technology > Allen, Horatio

  • 9 Stevens, John

    [br]
    b. 1749 New York, New York, USA
    d. 6 March 1838 Hoboken, New Jersey, USA
    [br]
    American pioneer of steamboats and railways.
    [br]
    Stevens, a wealthy landowner with an estate at Hoboken on the Hudson River, had his attention drawn to the steamboat of John Fitch in 1786, and thenceforth devoted much of his time and fortune to developing steamboats and mechanical transport. He also had political influence and it was at his instance that Congress in 1790 passed an Act establishing the first patent laws in the USA. The following year Stevens was one of the first recipients of a US patent. This referred to multi-tubular boilers, of both watertube and firetube types, and antedated by many years the work of both Henry Booth and Marc Seguin on the latter.
    A steamboat built in 1798 by John Stevens, Nicholas J.Roosevelt and Stevens's brother-in-law, Robert R.Livingston, in association was unsuccessful, nor was Stevens satisfied with a boat built in 1802 in which a simple rotary steam-en-gine was mounted on the same shaft as a screw propeller. However, although others had experimented earlier with screw propellers, when John Stevens had the Little Juliana built in 1804 he produced the first practical screw steamboat. Steam at 50 psi (3.5 kg/cm2) pressure was supplied by a watertube boiler to a single-cylinder engine which drove two contra-rotating shafts, upon each of which was mounted a screw propeller. This little boat, less than 25 ft (7.6 m) long, was taken backwards and forwards across the Hudson River by two of Stevens's sons, one of whom, R.L. Stevens, was to help his father with many subsequent experiments. The boat, however, was ahead of its time, and steamships were to be driven by paddle wheels until the late 1830s.
    In 1807 John Stevens declined an invitation to join with Robert Fulton and Robert R.Living-ston in their development work, which culminated in successful operation of the PS Clermont that summer; in 1808, however, he launched his own paddle steamer, the Phoenix. But Fulton and Livingston had obtained an effective monopoly of steamer operation on the Hudson and, unable to reach agreement with them, Stevens sent Phoenix to Philadelphia to operate on the Delaware River. The intervening voyage over 150 miles (240 km) of open sea made Phoenix the first ocean-going steamer.
    From about 1810 John Stevens turned his attention to the possibilities of railways. He was at first considered a visionary, but in 1815, at his instance, the New Jersey Assembly created a company to build a railway between the Delaware and Raritan Rivers. It was the first railway charter granted in the USA, although the line it authorized remained unbuilt. To demonstrate the feasibility of the steam locomotive, Stevens built an experimental locomotive in 1825, at the age of 76. With flangeless wheels, guide rollers and rack-and-pinion drive, it ran on a circular track at his Hoboken home; it was the first steam locomotive to be built in America.
    [br]
    Bibliography
    1812, Documents Tending to Prove the Superior Advantages of Rail-ways and Steam-carriages over Canal Navigation.
    He took out patents relating to steam-engines in the USA in 1791, 1803, and 1810, and in England, through his son John Cox Stevens, in 1805.
    Further Reading
    H.P.Spratt, 1958, The Birth of the Steamboat, Charles Griffin (provides technical details of Stevens's boats).
    J.T.Flexner, 1978, Steamboats Come True, Boston: Little, Brown (describes his work in relation to that of other steamboat pioneers).
    J.R.Stover, 1961, American Railroads, Chicago: University of Chicago Press.
    Transactions of the Newcomen Society (1927) 7: 114 (discusses tubular boilers).
    J.R.Day and B.G.Wilson, 1957, Unusual Railways, F.Muller (discusses Stevens's locomotive).
    PJGR

    Biographical history of technology > Stevens, John

  • 10 Sprague, Frank Julian

    [br]
    b. 25 July 1857 Milford, Connecticut, USA
    d. 25 October 1934 New York, USA
    [br]
    American electrical engineer and inventor, a leading innovator in electric propulsion systems for urban transport.
    [br]
    Graduating from the United States Naval Academy, Annapolis, in 1878, Sprague served at sea and with various shore establishments. In 1883 he resigned from the Navy and obtained employment with the Edison Company; but being convinced that the use of electricity for motive power was as important as that for illumination, in 1884 he founded the Sprague Electric Railway and Motor Company. Sprague began to develop reliable and efficient motors in large sizes, marketing 15 hp (11 kW) examples by 1885. He devised the method of collecting current by using a wooden, spring-loaded rod to press a roller against the underside of an overhead wire. The installation by Sprague in 1888 of a street tramway on a large scale in Richmond, Virginia, was to become the prototype of the universally adopted trolley system with overhead conductor and the beginning of commercial electric traction. Following the success of the Richmond tramway the company equipped sixty-seven other railways before its merger with Edison General Electric in 1890. The Sprague traction motor supported on the axle of electric streetcars and flexibly mounted to the bogie set a pattern that was widely adopted for many years.
    Encouraged by successful experiments with multiple-sheave electric elevators, the Sprague Elevator Company was formed and installed the first set of high-speed passenger cars in 1893–4. These effectively displaced hydraulic elevators in larger buildings. From experience with control systems for these, he developed his system of multiple-unit control for electric trains, which other engineers had considered impracticable. In Sprague's system, a master controller situated in the driver's cab operated electrically at a distance the contactors and reversers which controlled the motors distributed down the train. After years of experiment, Sprague's multiple-unit control was put into use for the first time in 1898 by the Chicago South Side Elevated Railway: within fifteen years multiple-unit operation was used worldwide.
    [br]
    Principal Honours and Distinctions
    President, American Institute of Electrical Engineers 1892–3. Franklin Institute Elliot Cresson Medal 1904, Franklin Medal 1921. American Institute of Electrical Engineers Edison Medal 1910.
    Bibliography
    1888, "The solution of municipal rapid transit", Trans. AIEE 5:352–98. See "The multiple unit system for electric railways", Cassiers Magazine, (1899) London, repub. 1960, 439–460.
    1934, "Digging in “The Mines of the Motor”", Electrical Engineering 53, New York: 695–706 (a short autobiography).
    Further Reading
    Lionel Calisch, 1913, Electric Traction, London: The Locomotive Publishing Co., Ch. 6 (for a near-contemporary view of Sprague's multiple-unit control).
    D.C.Jackson, 1934, "Frank Julian Sprague", Scientific Monthly 57:431–41.
    H.C.Passer, 1952, "Frank Julian Sprague: father of electric traction", in Men of Business, ed. W. Miller, Cambridge, Mass., pp. 212–37 (a reliable account).
    ——1953, The Electrical Manufacturers: 1875–1900, Cambridge, Mass. P.Ransome-Wallis (ed.), 1959, The Concise Encyclopaedia of World Railway
    Locomotives, London: Hutchinson, p. 143..
    John Marshall, 1978, A Biographical Dictionary of Railway Engineers, Newton Abbot: David \& Charles.
    GW / PJGR

    Biographical history of technology > Sprague, Frank Julian

  • 11 Booth, Henry

    [br]
    b. 4 April 1789 Liverpool, England
    d. 28 March 1869 Liverpool, England
    [br]
    English railway administrator and inventor.
    [br]
    Booth followed his father as a Liverpool corn merchant but had great mechanical aptitude. In 1824 he joined the committee for the proposed Liverpool \& Manchester Railway (L \& MR) and after the company obtained its Act of Parliament in 1826 he was appointed Treasurer.
    In 1829 the L \& MR announced a prize competition, the Rainhill Trials, for an improved steam locomotive: Booth, realizing that the power of a locomotive depended largely upon its capacity to raise steam, had the idea that this could be maximized by passing burning gases from the fire through the boiler in many small tubes to increase the heating surface, rather than in one large one, as was then the practice. He was apparently unaware of work on this type of boiler even then being done by Marc Seguin, and the 1791 American patent by John Stevens. Booth discussed his idea with George Stephenson, and a boiler of this type was incorporated into the locomotive Rocket, which was built by Robert Stephenson and entered in the Trials by Booth and the two Stephensons in partnership. The boiler enabled Rocket to do all that was required in the trials, and far more: it became the prototype for all subsequent conventional locomotive boilers.
    After the L \& MR opened in 1830, Booth as Treasurer became in effect the general superintendent and was later General Manager. He invented screw couplings for use with sprung buffers. When the L \& MR was absorbed by the Grand Junction Railway in 1845 he became Secretary of the latter, and when, later the same year, that in turn amalgamated with the London \& Birmingham Railway (L \& BR) to form the London \& North Western Railway (L \& NWR), he became joint Secretary with Richard Creed from the L \& BR.
    Earlier, completion in 1838 of the railway from London to Liverpool had brought problems with regard to local times. Towns then kept their own time according to their longitude: Birmingham time, for instance, was 7¼ minutes later than London time. This caused difficulties in railway operation, so Booth prepared a petition to Parliament on behalf of the L \& MR that London time should be used throughout the country, and in 1847 the L \& NWR, with other principal railways and the Post Office, adopted Greenwich time. It was only in 1880, however, that the arrangement was made law by Act of Parliament.
    [br]
    Bibliography
    1835. British patent no. 6,814 (grease lubricants for axleboxes). 1836. British patent no. 6,989 (screw couplings).
    Booth also wrote several pamphlets on railways, uniformity of time, and political matters.
    Further Reading
    H.Booth, 1980, Henry Booth, Ilfracombe: Arthur H.Stockwell (a good full-length biography, the author being the great-great-nephew of his subject; with bibliography).
    R.E.Carlson, 1969, The Liverpool \& Manchester Railway Project 1821–1831, Newton Abbot: David \& Charles.
    PJGR

    Biographical history of technology > Booth, Henry

  • 12 Woods, Granville

    [br]
    b. 1856 Columbus, Ohio, USA
    d. 1919 New York (?), USA
    [br]
    African-American inventor of electrical equipment.
    [br]
    He was first apprenticed in Columbus as a machinist and blacksmith. In 1872 he moved to Missouri, where he was engaged as a fireman and then engine-driver on the Iron Mountain Railroad. In his spare time he devoted much time to the study of electrical engineering. In 1878 he went to sea for two years as engineer on a British vessel. He returned to Ohio, taking up his previous occupation as engine-driver, and in 1884 he achieved his first patent, for a locomotive firebox. However, the drive towards things electrical was too strong and he set up the Woods Electric Company in Cincinnati, Ohio, to develop and market electrical inventions. Woods gained some fame as an inventor and became known as the "black Edison ". His first device, a telephone transmitter, was patented in December 1884 but faced stiff competition from similar inventions by Alexander Graham Bell and others. The following year he patented a device for transmitting messages in Morse code or by voice that was valuable enough to be bought up by the Bell Telephone Company. A stream of inventions followed, particularly for railway telegraph and electrical systems. This brought him into conflict with Edison, who was working in the same field. The US Patent Office ruled in Woods's favour; as a result of the ensuing publicity, one newspaper hailed Woods as the "greatest electrician in the world". In 1890 Woods moved to New York, where the opportunities for an electrical engineer seemed more favourable. He turned his attention to inventions that would improve the tram-car. One device enabled electric current to be transferred to the car with less friction than previously, incorporating a grooved wheel known as a "troller", whence came the popular term "trolley car".
    [br]
    Further Reading
    P.P.James, 1989, The Real McCoy: African-American Invention and Innovation 1619– 1930, Washington, DC: Smithsonian Institution, pp. 94–5.
    LRD

    Biographical history of technology > Woods, Granville

См. также в других словарях:

  • American Locomotive Company — Rechtsform Company Gründung 1901 Auflösung 1984 …   Deutsch Wikipedia

  • American Locomotive Company — Locomotive 6213, type 242, au Canada, construite par Alco Montréal (69711/1943) American Locomotive Company, société anonyme devenue Alco dans les années 1930, est un constructeur de locomotives des États Unis. Sommaire …   Wikipédia en Français

  • American Locomotive Company — Год основания …   Википедия

  • American Locomotive Company — Infobox Company company name=American Locomotive Company company logo= company type= foundation=1901 location=Schenectady, New York industry=rail transport products=steam and diesel electric locomotives The American Locomotive Company, often… …   Wikipedia

  • Canadian Locomotive Company — The Canadian Locomotive Company, commonly referred to as CLC, was a Canadian manufacturer of railway locomotives located in Kingston, Ontario. Its works were located on Ontario Street on Kingston s waterfront. Early beginnings and bankruptciesThe …   Wikipedia

  • North British Locomotive Company — Limited Former type Private Industry Rail transport Fate Assets Liquidated …   Wikipedia

  • Locomotive Mallet — Locomotive articulée Mallet 020 020, des chemins de fer suisses Une « Locomotives Mallet » est l appellation courante donnée à une locomotive à vapeur articulée compound, système breveté en 1884 par l ingénieur franco suisse Anatole… …   Wikipédia en Français

  • General American Marks Company — The General American Marks Company is part of GATX Corporation, formerly the General American Transportation Company. With headquarters in Chicago, GATX Corporation owns businesses that lease railcars, locomotives, and aircraft.Some past and… …   Wikipedia

  • American — may refer to: * A person, inhabitant, or attribute of the United States of America * A person, an inhabitant, or attribute of the Americas, the lands and regions of the Western Hemisphere * A person or attribute of the indigenous peoples of the… …   Wikipedia

  • American — Americanly, adv. Americanness, n. /euh mer i keuhn/, adj. 1. of or pertaining to the United States of America or its inhabitants: an American citizen. 2. of or pertaining to North or South America; of the Western Hemisphere: the American… …   Universalium

  • American — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. Sur les autres projets Wikimedia : « American », sur le Wiktionnaire (dictionnaire universel) American est le mot anglais équivalent au… …   Wikipédia en Français

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»